数学的由来简介(数学的由来)
数理逻辑这门学科建立以后,发展比较迅速,促进它发展的因素也是多方面的。
比如,非欧几何的建立,促进人们去研究非欧几何和欧氏几何的无矛盾性,就促进了数理逻辑的发展。
集合论的产生是近代数学发展的重大事件,但是在集合论的研究过程中,出现了一次称作数学史上的第三次大危机。
这次危机是由于发现了集合论的悖论引起。
什么是悖论呢?悖论就是逻辑矛盾。
集合论本来是论证很严格的一个分支,被公认为是数学的基础。
1903年,英国唯心主义哲学家、逻辑学家、数学家罗素却对集合论提出了以他名字命名的“罗素悖论”,这个悖论的提出几乎动摇了整个数学基础。
罗素悖论中有许多例子,其中一个很通俗也很有名的例子就是“理发师悖论”:某乡村有一位理发师,有一天他宣布:只给不自己刮胡子的人刮胡子。
那么就产生了一个问题:理发师究竟给不给自己刮胡子?如果他给自己刮胡子,他就是自己刮胡子的人,按照他的原则,他又不该给自己刮胡子;如果他不给自己刮胡子,那么他就是不自己刮胡子的人,按照他的原则,他又应该给自己刮胡子。
这就产生了矛盾。
悖论的提出,促使许多数学家去研究集合论的无矛盾性问题,从而产生了数理逻辑的一个重要分支—公理集合论。
非欧几何的产生和集合论的悖论的发现,说明数学本身还存在许多问题,为了研究数学系统的无矛盾性问题,需要以数学理论体系的概念、命题、证明等作为研究对象,研究数学系统的逻辑结构和证明的规律,这样又产生了数理逻辑的另一个分支—证明论。
数理逻辑新近还发展了许多新的分支,如递归论、模型论等。
第归论主要研究可计算性的理论,他和计算机的发展和应用有密切的关系。
模型论主要是研究形式系统和数学模型之间的关系。
数理逻辑近年来发展特别迅速,主要原因是这门学科对于数学其它分支如集合论、数论、代数、拓扑学等的发展有重大的影响,特别是对新近形成的计算机科学的发展起了推动作用。
反过来,其他学科的发展也推动了数理逻辑的发展。
正因为它是以门新近兴起而又发展很快的学科,所以它本身也存在许多问题有待于深入研究。
现在许多数学家正针对数理逻辑本身的问题,进行研究解决。
总之,这门学科的重要性已经十分明显,他已经引起了更多人的关心和重视。
参考文献:有关资料。