常用极限公式(极限公式)
lim(x→+∞)(1-1/x)^√x =lim(x→+∞)[1+(-1/x)]^[(-1/x)*(-x*√x)] =lim(x→+∞)e^(-1/x*√x) =e^lim(x→+∞)1/√x =e^0 =1 或者用e^[ln(1-1/x)^√x] =e^[√x*ln(1-1/x)] √x*ln(1-1/x) =ln(1-1/x)/(1/√x)(罗比达法则) =x/(x-1)*[-(-1/x^2)]/[-1/2*x*√x] =-1/[(x-1)x^2√x] =0。
lim(x→+∞)(1-1/x)^√x =lim(x→+∞)[1+(-1/x)]^[(-1/x)*(-x*√x)] =lim(x→+∞)e^(-1/x*√x) =e^lim(x→+∞)1/√x =e^0 =1 或者用e^[ln(1-1/x)^√x] =e^[√x*ln(1-1/x)] √x*ln(1-1/x) =ln(1-1/x)/(1/√x)(罗比达法则) =x/(x-1)*[-(-1/x^2)]/[-1/2*x*√x] =-1/[(x-1)x^2√x] =0。