勾股定理公式求斜边的长(勾股定理公式求斜边)
勾股定理公式:a^2+b^2=c^2. c=√(a^2+b^2)=√(17.5^2+51.5^2)≈54.39勾股定理 如果直角三角形的两条直角边长分别为a、b,斜边为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方. 指出: (1)我国古代把直角三角形中较短的直角边称为勾。
较长的直角边称为股,斜边称为弦,即勾2+股2=弦2. (2)勾股定理反映了直角三角形三边之间的数量关系。
因此是直角三角形的性质定理,它为我们利用计算的方法研究几何图形的性质提供了新的途径. (3)勾股定理的证明常用面积法证明,读者可根据图的几种拼图方式。
用面积证明勾股定理. (4)勾股定理只适用于直角三角形,对于一般非直角三角形就不存在这种关系.勾股定理的作用是:①已知直角三角形的两边求第三边;②在直角三角形中,已知其中的一边。
求另两边的关系;③用于证明平方关系;④利用勾股定理,作出长为的线段.二、重点、难点、疑点突破勾股定理 勾股定理在西方又被称为毕达哥拉斯定理,它有着悠久的历史。
蕴涵着丰富的文化价值.勾股定理是数学史上的一个伟大的定理,在现实生活中有着广泛的应用,被人誉为“千古第一定理”. 勾股定理反映了直角三角形(三边分别为a。
b,c,其中c为斜边)的三边关系。
即c2=a2+b2. 它的变形为c2-a2=b2或c2-b2=a2. 运用它可以由直角三角形中的两条边长求第三边. 例如:已知一个直角三角形两边长分别为3cm,4cm,求第三边长. 因为该题设没有说明哪条边是直角三角形的斜边。
所以要进行分类讨论. 当两直角边分别为3cm,4cm时,由勾股定理有斜边为=5cm; 当斜边为4cm。
一直角边为3cm时,则另一直角边为. 故第三边为5cm或(根号)7cm.a的平方+b的平方=c的平方。